A PEER-REVIEWED JOURNAL OF RESEARCH AND CLINICAL MEDICINEISSN 1727-2378 (Print)         ISSN 2713-2994 (Online)
Ru
En

Menopausal Hormonal Therapy During COVID-19 Pandemic

DOI:10.31550/1727-2378-2021-20-1-78-83
For citation: Yakushevskaya O.V., Yureneva S.V. Menopausal Hormonal Therapy During COVID-19 Pandemic. Doctor.Ru. 2021; 20(1): 78–83. (in Russian). DOI: 10.31550/1727-2378-2021-20-1-78-83
12 March 10:08

Objective of the Review: To discuss the practicality and safety of menopausal hormonal therapy (MHT) during COVID-19 pandemic.

Key Points. Currently the age-related aspects of women’s health are given close attention. We have a clear idea of the physiological features of menopause and possible consequences of oestrogen deficit. No doubt that menopausal hormonal therapy (MHT) has protective effect regarding age-associated diseases. Still, COVID-19 pandemic caused by SARS-CoV-2 raises a lot of questions about the practicality of MHT initiation and prolongation. The article compares pathogenic mechanisms of coronavirus infection development with MHT effects; also, it describes the solution proposed by the leading international menopausal associations regarding MHT feasibility during pandemic and limited consultation possibilities.

Conclusion. Pathogenic features of the impact from SARS-CoV-2 and specific MHT effects for the haemostasis require thorough assessment of risks associated with MHT continuation. However it is worth noting that oestrogens are a key player in immune response and have multifaceted protective action for vascular endothelium. MHT is based on many years of clinical trials. Therefore, experts are of the opinion that MHT should be prescribed with account to potential complications caused by the coronavirus infection.

Contributions: Yakushevskaya, O.V. and Yureneva, S.V. — developed the concept of the article, collected information, and participated in composing the article, approved the final version submitted for publication.

Conflict of interest: The authors declare that they do not have any conflict of interests.

O.V. Yakushevskaya (Corresponding author) — V.I. Kulakov National Medical Scientific Centre of Obstetrics, Gynecology and Perinatal Medicine of the Ministry of Health of the Russian Federation; 4 Academician Oparin Str., Moscow, Russian Federation 117997. https://orcid.org/0002-7430-1207. E-mail: aluckyone777@gmail.com

S.V. Yureneva — V.I. Kulakov National Medical Scientific Centre of Obstetrics, Gynecology and Perinatal Medicine of the Ministry of Health of the Russian Federation; 4 Academician Oparin Str., Moscow, Russian Federation 117997. https://orcid.org/0000-0003-2864-066X. E-mail: syureneva@gmail.com

Доктор.ру

Received: 25.01.2021
Accepted: 25.02.2021

12 March 10:08
LITERATURE
  1. Mauvais-Jarvis F., Klein S.L., Levin E.R. Estradiol, progesterone, immunomodulation, and COVID-19 outcomes. Endocrinology. 2020; 161(9): bqaa127. DOI: 10.1210/endocr/bqaa127
  2. Karlberg J., Chong D.S.Y., Lai W.Y.Y. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol. 2004; 159(3): 229–31. DOI: 10.1093/aje/kwh056
  3. Alghamdi I.G., Hussain I.I., Almalki S.S. et al. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. Gen. Med. 2014; 7: 417–23. DOI: 10.2147/IJGM.S67061
  4. Mauvais-Jarvis F., Merz N.B., Barnes P.J. et al. Sex and gender: modifiers of health, disease and medicine. Lancet. 2020; 396(10250): 565–82. DOI: 10.1016/S0140-6736(20)3156
  5. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382(18): 1708–20. DOI: 10.1056/NEJMoa2002032
  6. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020; 323(20): 2052–9. DOI: 10.1001/jama.2020.6775
  7. Docherty A.B., Harrison E.M., Green C.A. et al. Features of 16 749 hospitalised UK patients with COVID-19 using the ISARIC WHO clinical characterisation protocol. URL: https://www.medrxiv.org/content/10.1101/2020.04.23.20076042v1.full.pdf+html (Accessed January 15, 2021).
  8. Scully E., Haverfield J., Ursin R.L. et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020; 20(7): 442–7. DOI: 10.1038/s41577-020-0348-8
  9. Wu B.N., O’Sullivan A.J. Sex differences in energy metabolism need to be considered with lifestyle modifications in humans. J. Nutr. Metab. 2011; 2011: 391809. DOI: 10.1155/2011/391809
  10. Taneja V. Sex hormones determine immune response. Front. Immunol. 2018; 9: 1931. DOI: 10.3389/fimmu.2018.01931
  11. Bhatia A., Sekhon H.K., Kaur G. Sex hormones and immune dimorphism. Sci. World J. 2014: 159150. DOI: 10.1155/2014/159150
  12. Ackerman L.S. Sex hormones and the genesis of autoimmunity. Arch. Dermatol. 2006; 142(3): 371–6. DOI: 10.1001/archderm.142.3.371
  13. Banchereau J., Briere F., Caux C. et al. Immunobiology of dendritic cells. Ann. Rev. Immunol. 2000; 18: 767–811. DOI: 10.1146/annurev.immunol.18.1.767
  14. Mor G., Sapi E., Abrahams V.M. et al. Interaction of the estrogen receptors with the Fas ligand promoter in human monocytes. J. Immunol. 2003; 170(1): 114–22. DOI: 10.4049/jimmunol.170.1.114
  15. Grimaldi C.M., Jeganathan V., Diamond B. Hormonal regulation of B cell development: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 2006; 176(5): 2703–10. DOI: 10.4049/jimmunol.176.5.2703
  16. Marino M., Galluzzo P., Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics. 2006; 7(8): 497–508. DOI: 10.2174/138920206779315737
  17. Markle J.G., Fish E.N. SeXX matters in immunity. Trends Immunol. 2014; 35(3): 97–104. DOI: 10.1016/j.it.2013.10.006
  18. Gleicher N., Barad D.H. Gender as risk factor for autoimmune diseases. J. Autoimmun. 2007; 28(1): 1–6. DOI: 10.1016/j.jaut.2006.12.004
  19. Miyake S. Mind over cytokines: crosstalk and regulation between the neuroendocrine and immune systems. Clin. Experim.l Neuroimmunol. 2012; 3(1): 1–15. DOI: 10.1111/j.1759-1961.2011.00023.x
  20. Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016; 16(10): 626–38. DOI: 10.1038/nri.2016.90
  21. Mueller S., Saunier K., Hanisch C. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 2006; 72(2): 1027–33. DOI: 10.1128/AEM.72.2.1027-1033.2006
  22. Park H.J., Choi J.M. Sex-specific regulation of immune responses by PPARs. Exp. Mol. Med. 2017; 49(8): e364. DOI: 10.1038/emm.2017.102
  23. Zhang M.A., Rego D., Moshkova M. et al. Peroxisome proliferator-activated receptor (PPAR)alpha and-gamma regulate IFN-gamma and IL-17A production by human T cells in a sex-specific way. Proc. Natl. Acad. Sci. USA. 2012; 109(24): 9505–10. DOI: 10.1073/pnas.1118458109
  24. Shakhmatova, O.O. Bradykinin storm: new aspects in the pathogenesis of COVID-19. URL: https://cardioweb.ru/news/item/2361-bradikininovyj-shtorm-novye-aspekty-v-patogeneze-covid-19 (Accessed November 23, 2020) (in Russian)
  25. Grasselli G., Zangrillo A., Zanella A. et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020; 323(16): 1574–81. DOI: 10.1001/jama.2020.5394
  26. Channappanavar R., Fett C., Mack M. et al. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017; 198(10): 4046–53. DOI: 10.4049/jimmunol.1601896
  27. Kovats S., Carreras E. Regulation of dendritic cell differentiation and function by estrogen receptor ligands. Cell Immunol. 2008; 252(1–2): 81–90. DOI: 10.1016/j.cellimm.2007.10.008
  28. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020; 80(6): 607–13. DOI: 10.1016/j.jinf.2020.03.037
  29. Chen G., Wu D., Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020; 130(5): 2620–9. DOI: 10.1172/JCI137244
  30. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0
  31. Lan J., Ge J., Yu J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807): 215–20. DOI: 10.1038/s41586-020-2180-5
  32. Yi C., Sun X., Ye J. et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol. Immunol. 2020; 17(6): 621–30. DOI: 10.1038/s41423-020-0458-z
  33. Shastri A., Wheat J., Agrawal S. et al. Delayed clearance of SARS-CoV-2 in male compared to female patients: high ACE2 expression in testes suggests possible existence of gender-specific viral reservoirs. URL: https://www.medrxiv.org/content/10.1101/2020.04.16.20060566v1.full.pdf+html (Accessed January 15, 2021).
  34. Gibson W.T., Evans D.M., An J. et al. ACE 2 coding variants: a potential X-linked risk factor for COVID-19 disease. URL: https://www.biorxiv.org/content/10.1101/2020.04.05.026633v1.full.pdf+html (Accessed January 15, 2021).
  35. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–80.e8. DOI: 10.1016/j.cell.2020.02.052
  36. Li W., Zhang C., Sui J. et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005; 24(8): 1634–43. DOI: 10.1038/sj.emboj.7600640
  37. Meneton P., Galan P., Bertrais S. et al. High plasma aldosterone and low renin predict blood pressure increase and hypertension in middle-aged Caucasian populations. J. Hum. Hypertens. 2008; 22(8): 550–8. DOI: 10.1038/jhh.2008.27
  38. Chakraborti S., Davidge S.T. G-protein coupled receptor 30: a novel regulator of endothelial inflammation. Plos One. 2012; 7(12): е52357. DOI: 10.1371/journal.pone.0052357
  39. Stenlow K., Werner N., Berweiler J. et al. Estrogen increases bone marrow-derived endothelial prohenitor cell production and diminishes neointima formation. Circulation. 2003; 107(24): 3059–65. DOI: 10.1161/01.CIR.0000077911.81151.30
  40. Hudyakova N.V., Shishkin A.N., Pchelin I.Yu. et al. Mechanisms of estrogen influence on cardiovascular system. Vestnik of Saint Petersburg University. Medicine. Ser. 11. 1: 13–24. (in Russian)
  41. Speyer C.L., Rancilio N.J., McClintock S.D. et al. Regulatory effects of estrogen on acute lung inflammation in mice. Am. J. Physiol. Cell Physiol. 2005; 288(4): C881–90. DOI: 10.1152/ajpcell.00467.2004
  42. Peretz J., Pekosz A., Lane A.P. et al. Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors. Am. J. Physiol. Lung Cell Mol. Physiol. 2016; 310(5): L415–25. DOI: 10.1152/ajplung.00398.2015
  43. Dyall J., Coleman C.M., Hart B.J. et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014; 58(8): 4885–93. DOI: 10.1128/AAC.03036-14
  44. Rachoń D., Myśliwska J., Suchecka-Rachoń K. et al. Effects of oestrogen deprivation on interleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J. Endocrinol. 2002; 172(2): 387–95. DOI: 10.1677/joe.0.1720387
  45. Porter V.R., Greendale G.A., Schocken M. et al. Immune effects of hormone replacement therapy in postmenopausal women. Exp. Gerontol. 2001; 36(2): 311–26. DOI: 10.1016/s0531-5565(00)00195-9
  46. Komi J., Lassila O. Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood. 2000; 95(9): 2875–82.
  47. Panevina A.S., Smetneva N.S., Vasilenko A.M. et al. The effects of menopausal hormone therapy on proinflammatory cytokines and immunoglobulins in perimenopausal patients with type 2 diabetes mellitus and chronic obstructive pulmonary disease (COPD). Therapeutic Archive. 2018; 9(10): 79–83. (in Russian). DOI: 10.26442/terarkh201890104-83
  48. Leng Z., Zhu R., Hou W., Feng Y. et al. Transplantation of ACE2– mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11(2): 216–28. DOI: 10.14336/AD.2020.0228
  49. Piróg M., Jach R., Undas A. Effects of ultra-low-dose versus standard hormone therapy on fibrinolysis and thrombin generation in postmenopausal women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017; 217: 77–82. DOI: 10.1016/j.ejogrb.2017.08.023
  50. Fruzzetti F., Cagnacci A., Primiero F et al. Contraception during coronavirus-COVID 19 pandemia. Recommеndations of the Board of the Italian Society for Contraception. Eur. J. Contracept. Reprod. Health Care. 2020; 25(3): 231–2. DOI: 10.1080/13625187.2020.1766016
  51. Cattaneo M., Bertinato E.M., Birocchi S. et al. Pulmonary embolism or pulmonary thrombosis in COVID19? Is the recommendation to use high-dose heparin for thromboprophylaxis justified? Thromb. Haemost. 2020; 120(08): 1230–2. DOI: 10.1055/s-0040-1712097
  52. Ramírez I., De la Viuda E., Baquedano L. et al. The thromboembolic risk in COVID-19 women under hormonal treatment group. Maturitas. 2020; 138: 78–9. DOI: 10.1016/j.maturitas.2020.05.021
  53. Ramírez I., De la Viuda E., Baquedano L. et al. Managing thromboembolic risk with menopausal hormone therapy and hormonal contraception in the COVID-19 pandemic: Recommendations from the Spanish Menopause Society, Sociedad Española de Ginecología y Obstetricia and Sociedad Española de Trombosis y Hemostasia. Maturitas. 2020; 137: 57–62. DOI: 10.1016/j.maturitas.2020.04.019
  54. Cagnacci A., Bonaccorsi G., Gambacciani M.; board of the Italian Menopause Society. Reflections and recommendations on the COVID-19 pandemic: should hormone therapy be discontinued? Maturitas. 2020; 138: 76–7. DOI: 10.1016/j.maturitas.2020.05.022

News

30 June 00:00
A New Issue of Doctor.Ru Neurology Psychiatry, Vol. 20, No. 5 (2021), Published

Find original articles and reviews covering various aspects of neurology, psychiatry and the interview with Professor Marina Arkadievna Kinkulkina

28 June 00:00
A New Issue of Doctor.Ru Internal Medicine, Vol. 20, No. 4 (2021), Published

Find original articles and reviews covering various aspects of cardiology, gastroenterology, internal medicine and the interview with Professor Elena Zelikovna Golukhova

 

3 May 17:06
A New Issue of Doctor.Ru Pediatrics, Vol. 20, No. 3 (2021), Published

Find original articles and reviews covering various aspects of pediatrics and the interview with Professor Evgeny Grigorievich Furman

3 May 17:06
A New Issue of Doctor.Ru Endocrinology, Vol. 20, No. 2 (2021), Published

Find original articles and reviews covering various aspects of endocrinology and the interview with Professor Valentin Viktorovich Fadeev

16 April 11:57
Igor Evgenievich Khatkov joined the American Surgical Association

Igor Evgenievich Khatkov, Head of A. S. Loginov Moscow Clinical Scientific and Practical Centre, Chief Oncologist in and for Moscow is now an honoured member of the American Surgical Association.

All news