Fibroid Heart Markers in Patients with Atrial Fibrillation

Bibliography link: Moseychuk K.A., Sinyaeva A.S., Filippov E.V. Fibroid Heart Markers in Patients with Atrial Fibrillation. Doctor.Ru. 2020; 19(5): 14–18. (in Russian) DOI: 10.31550/1727-2378-2020-19-5-14-18
22 July 17:27

Objective of the Review: to sum up contemporary references on the use of some serum myocardial fibrosis markers in clinical practice in patients with atrial fibrillation (AF) as potential prognostic AF outcome predictors, recurrent seizures and antiarrhythmic therapy efficiency.

Key Points. The article contains a review of references in the use of such biomarkers as galectin 3, fibronectin and tissue growth factor β1 (TGF-β1) in non-invasive diagnosis of myocardial fibrosis in AF patients. Pre-clinical information indicates that galectin 3 is of great significance for myocardial fibrogenesis in experimental models. There is a correlation between galectin 3 serum levels in AF patients and marked left atrium fibrosis (r = 0.696, p < 0.001). It is noted that in patients with AF, galectin 3 levels are 3 times higher than in general population.

TGF-β1 is likely to play the most important role in pathological fibrosis. High plasma concentration of TGF-β1 is a potential non-invasive predictor of electroanatomic remodelling of left atrium in nonvalvular AF. There is a positive correlation between serum TGF-β1 and left atrium fibrosis rate in Af patients. Serum TGF-β1 concentration was significantly higher in patients with recurrent AF vs. patients without relapses, and is an independent risk factor of relapse.

Up to date there is only sparse information on the relationship between serum fibronectin and risk of AF. Data are available that fibronectin level was statistically higher in patients with paroxysmal AF vs. healthy subjects. Besides it was found out that fibronectin level is a predictor of electric remodelling in left atrium myocardium. No researches confirming that fibronectin concentration correlates with the rate of myocardial fibrosis are described in modern references.

Conclusion. Up to date, measurement of galectin 3, fibronectin and TGF-β1 to diagnose myocardial fibrosis has been studied mostly in experimental trials. Use of these markers in clinical practice is described in small samples.

Contributions: Moseychuk, K.A. and Sinyaeva, A.S. — thematic publications reviewing; Filippov, E.V. — review of critically important material, approval of the manuscript for publication.

Conflict of interest: The authors declare that they do not have any conflict of interests.

K.A. Moseychuk (Corresponding author) — Ryazan State Medical University of the Ministry of Health of the Russian Federation; 9 Vysokovoltnaya Str., Ryazan, Russian Federation 390026. eLIBRARY.RU SPIN: 1297-9721. E-mail:

A.S. Sinyaeva — Ryazan State Medical University of the Ministry of Health of the Russian Federation; 9 Vysokovoltnaya Str., Ryazan, Russian Federation 390026. E-mail:

E.V. Filippov — Ryazan State Medical University of the Ministry of Health of the Russian Federation; 9 Vysokovoltnaya Str., Ryazan, Russian Federation 390026. eLIBRARY.RU SPIN: 2809-2781. E-mail:


Received: 20.12.2019
Accepted: 31.03.2020

22 July 17:27
  1. Heijman J., Algalarrondo V., Voigt N., Melka J., Wehrens X.H., Dobrev D. et al. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc. Res. 2016; 109(4): 467–79. DOI: 10.1093/cvr/cvv275
  2. Zahid S., Cochet H., Boyle P. M., Schwarz E.L., Whyte K.N., Vigmond E.J. et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 2016; 110(3): 443–54. DOI: 10.1093/cvr/cvw073
  3. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin. Electrophysiol. 2017; 3(5): 425–43. DOI: 10.1016/j.jacep.2017.03.002
  4. López B., González A., Ravassa S., Beaumont J., Moreno M.U., San José G. et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J. Am. Coll. Cardiol. 2015; 65(22): 2449–56.
  5. Querejeta R., Varo N., López B., Larman M., Artiñano E., Etayo J.C. et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000; 101(14): 1729–35. DOI: 10.1161/01.cir.101.14.1729
  6. López B., Querejeta R., González A., Larman M., Díez J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension. 2012; 60(3): 677–83. DOI: 10.1161/HYPERTENSIONAHA.112.196113
  7. Sharma U.C., Pokharel S., van Brakel T.J., van Berlo J.H., Cleutjens J.P., Schroen B. et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004; 110(19): 3121–8. DOI: 10.1161/01.CIR.0000147181.65298.4D
  8. Yalcin M.U., Gurses K.M., Kocyigit D., Canpinar H., Canpolat U., Evranos B. et al. The association of serum galectin 3 levels with atrial electrical and structural remodeling. J. Cardiovasc. Electrophysiol. 2015; 26(6): 635–40. DOI: 10.1111/jce.12637
  9. Yu L., Ruifrok W.P., Meissner M., Bos E.M., van Goor H., Sanjabi B. et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 2013; 6(1): 107–17. DOI: 10.1161/CIRCHEARTFAILURE.112.971168
  10. Ho J.E., Yin X., Levy D., Vasan R.S., Magnani J.W., Ellinor P.T. et al. Galectin 3 and incident atrial fibrillation in the community. Am. Heart J. 2014; 167(5): 729–34. DOI: 10.1016/j.ahj.2014.02.009
  11. Tseluiko V.S., Vashakidze Z.S. Galectin 3 in patients with atrial fibrillation. Ukrainian Journal of Cardiology. 2012; 3: 45–9. (in Russian)
  12. Zaslavskaya E.L., Morozov A.N., Ionin V.A., Ma I., Nifontov S.E., Baranova E.I. et al. The role of transforming growth factor beta-1 and galectin 3 in left atrium fibrosis in patients with paroxysmal atrial fibrillation and metabolic syndrome. Russian Journal of Cardiology. 2018; 2(154): 60–6. (in Russian)
  13. Dzeshka M.S., Lip G.Y., Snezhitskiy V., Shantsila E. Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J. Am. Coll. Cardiol. 2015; 66(8): 943–59. DOI: 10.1016/j.jacc.2015.06.1313
  14. Marrouche N.F., Wilber D., Hindricks G., Jais P., Akoum N., Marchlinski F. et al. Association of atrial tissue fibrosis identified by delayedenhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA. 2014; 311(5): 498–506. DOI: 10.1001/jama.2014.3
  15. Kornej J., Schmidl J., Bollmann A. Galectin-3 in atrial fibrillation: a novel marker of atrial remodeling or just bystander? Am. J. Cardiol. 2015; 116(1): 163–8. DOI: 10.1016/j.amjcard.2015.03.055
  16. Lippi G., Cervellin G., Sanchis-Gomar F. Galectin-3 in atrial fibrillation: simple bystander, player or both? Clin. Biochem. 2015; 48(12): 818–22. DOI: 10.1016/j.clinbiochem.2015.04.021
  17. Takemoto Y., Ramirez R.J., Yokokawa M., Kaur K., Ponce-Balbuena D., Sinno M.C. et al. Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic Transl. Sci. 2016; 1(3): 143–54. DOI: 10.1016/j.jacbts.2016.03.003
  18. Clementy N., Benhenda N., Piver E., Pierre B., Bernard A., Fauchier L. et al. Serum galectin-3 levels predict recurrences after ablation of atrial fibrillation. Sci. Rep. 2016; 6: 34357. DOI: 10.1038/srep34357
  19. Hernández-Romero D., Vílchez J.A., Lahoz Á., Romero-Aniorte A.I., Jover E., García-Alberola A. et al. Galectin-3 as a marker of interstitial atrial remodelling involved in atrial fibrillation. Sci. Rep. 2017; 7: 40378. DOI: 10.1038/srep40378
  20. Tang Z., Zeng L., Lin Y., Han Z., Gu J., Wang C. et al. Circulating galectin-3 is associated with left atrial appendage remodelling and thrombus formation in patients with atrial fibrillation. Heart Lung Circ. 2019; 28(6): 923–31. DOI: 10.1016/j.hlc.2018.05.094
  21. Sramko M., Peichl P., Wichterle D., Tintera J., Weichet J., Maxian R. et al. Clinical value of assessment of left atrial late gadolinium enhancement in patients undergoing ablation of atrial fibrillation. Int. J. Cardiol. 2015; 179: 351–7. DOI: 10.1016/j.ijcard.2014.11.072
  22. Zhang L., Joseph L., Joseph J. In vivo and in vitro effects of vasopressin V2 receptor antagonism on myocardial fibrosis in rats. Am. J. Med. Sci. 2019; 357(2): 151–9. DOI: 10.1016/j.amjms.2018.11.010
  23. Schotten U., Verheule S., Kirchhof P., Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 2011; 91(1): 265–325. DOI: 10.1152/physrev.00031.2009
  24. Abramochkin D.V., Lozinsky I.T., Kamkin A. Influence of mechanical stress on fibroblast–myocyte interactions in mammalian heart. J. Mol. Cell. Cardiol. 2014; 70: 27–36. DOI: 10.1016/j.yjmcc.2013.12.020
  25. Chen K., Mehta J.L., Li D., Joseph L., Joseph J. Transforming growth factor — receptor endoglin is expressed in cardiac fibroblasts and modulates profibrogenic actions of angiotensin II. Circ. Res. 2004; 95(12): 1167–73. DOI: 10.1161/01.RES.0000150369.68826.2f
  26. Schultz J.E.J., Witt S.A., Glascock B.J., Nieman M.L., Reiser P.J., Nix S.L. et al. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J. Clin. Invest. 2002; 109(6): 787–96. DOI: 10.1172/JCI14190
  27. Lee A.A., Dillmann W.H., McCulloch A.D., Villarreal F.J. Angiotensin II stimulates the autocrine production of transforming growth factor-β1 in adult rat cardiac fibroblasts. J. Mol. Cell. Cardiol. 1995; 27(10): 2347–57. DOI: 10.1016/s0022-2828(95)91983-x
  28. Khan R., Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor‐β1 in cardiomyopathy, valvular disease and arrhythmia. Immunology. 2006; 118(1): 10–24. DOI: 10.1111/j.1365-2567.2006.02336.x
  29. Polyakova V., Miyagawa S., Szalay Z., Risteli J., Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J. Cell. Mol. Med. 2008; 12(1): 189–208. DOI: 10.1111/j.1582-4934.2008.00219.x
  30. Nakajima H., Nakajima H.O., Salcher O., Dittiè A.S., Dembowsky K., Jing S. et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-β1 transgene in the heart. Circ. Res. 2000; 86(5): 571–9. DOI: 10.1161/01.res.86.5.571
  31. Tian Y., Wang Y., Chen W., Yin Y., Qin M. Role of serum TGF-β1 level in atrial fibrosis and outcome after catheter ablation for paroxysmal atrial fibrillation. Medicine. 2017; 96(51): e9210. DOI: 10.1097/MD.0000000000009210
  32. Tan S.M., Zhang Y., Connelly K.A., Gilbert R.E., Kelly D.J. Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2010; 298(5): H1415–25. DOI: 10.1152/ajpheart.01048.2009
  33. Engebretsen K.V.T., Skårdal K., Bjørnstad S., Marstein H.S., Skrbic B., Sjaastad I. et l. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J. Mol. Cell. Cardiol. 2014; 76: 148–57. DOI: 10.1016/j.yjmcc.2014.08.008
  34. Zhao S., Li M., Ju W., Gu L., Zhang F., Chen H. et al. Serum level of transforming growth factor beta 1 is associated with left atrial voltage in patients with chronic atrial fibrillation. Indian Pacing Electrophysiol. J. 2018; 18(3): 95–9. DOI: 10.1016/j.ipej.2017.11.001
  35. Bakunts G.O. Endogenous factors of stroke. M.: GEOTAR-Media; 2011. 360 p. (in Russian)
  36. Canpolat U., Oto A., Yorgun H., Sunman H., Şahiner L., Kaya E.B. et al. Association of plasma fibronectin level with left atrial electrical and structural remodelling in lone paroxysmal atrial fibrillation: a cross-sectional study. Turk. Kardiyol. Dern. Ars. 2015; 43(3): 259–68. DOI: 10.5543/tkda.2015.83893
  37. Hiram R., Naud P., Xiong F., Al-U'datt D., Algalarrondo V., Sirois M.G. et al. Right atrial mechanisms of atrial fibrillation in a rat model of right heart disease. J. Am. Coll. Cardiol. 2019; 74(10): 1332–47. DOI: 10.1016/j.jacc.2019.06.066
Новости мировой медицины! Свежие статьи из журнала! Будьте в курсе!

Похожие статьи

Similar article
19 April 00:00, Interview
Doctor.Ru Pediatrics. Vol. 20, No. 3 (2021)
19 April 00:00, Paediatrics
A.V. Aksenov, E.A. Ivanovskaya
Successful Use of Tocilizumab in a Child with Systemic Juvenile Idiopathic Arthritis
Doctor.Ru Pediatrics. Vol. 20, No. 3 (2021)